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Abstract

In computerized adaptive testing, updating item parameter estimates using adaptive testing

data is often called on-line calibration. In this paper, it is investigated how to evaluate

whether the adaptive testing data used for on-line calibration sufficiently fit the item

response model used. Three approaches are investigated, based on a Lagrange multiplier

(LM) statistic, a Wald statistic and a cumulative sum (CUSUM) statistic. The power of the

tests is evaluated with a number of simulation studies.

Key words: Computerized Adaptive Testing, CUSUM-chart, Item Response Theory,

Lagrange Multiplier Test, Model Fit, Modification Indices, On-line Calibration, Rao's Effi-

cient Score Test, 2-Parameter Logistic Model, 3-Parameter Logistic Model.
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Introduction

Computerized assessment, such as CBT (computer based testing) and CAT

(computer adaptive testing), is based on the availability of a large pool of calibrated test

items. Usually, the calibration process consists of two stages.

(1) The pre-testing stage. In this stage, subsets of items are administered to subsets of

respondents in a series of pre-test sessions, and an item response (IRT) model is fitted

to the data to obtain item parameter estimates to support computerized test

administration.

(2) The on-line stage. In this stage, data are gathered in a computerized assessment

environment. There may be several motives for using these data for further parameter

estimation. The interest may be to continuously update estimates to attain the greatest

possible precision. Or new, previously un-calibrated items may be entered into the

bank and can only be calibrated using incoming responses.

Closely related to the motives for on-line calibration, but also an aim in itself, is quality

control, that is, checking whether pre-test and on-line results comply with the same IRT

model. In the present paper, three methods of quality control are proposed. The first

method is based on the Lagrange multiplier statistic. The method can be viewed as a

generalization to adaptive testing of the modification indices for the 2-PL model and the

nominal response model introduced by Glas (1997a, 1997b). The second method is based

on a Wald statistic. The third method is based on a so-called cumulative sum (CUSUM)

statistic. This last approach stems from the field of statistical quality control (see, for

instance, Wetherill, 1977). Using this method in the framework of IRT-based adaptive

testing was first suggested by Veerkamp (1996) in the framework of the Rasch model. In

this paper, the procedure will be generalized to the 3-PL model.

This paper is organized as follows. In Section 2, a framework for estimation of the

2-PL model will be outlined, that will subsequently be used for a general introduction of

the LM statistic in Section 3. Then, in the Sections 4 and 5, the LM and the Wald and

CUSUM statistics will be applied to quality control in adaptive testing. In Section 6, the

performance of the proposed methods will be evaluated with a number of simulation

studies. Finally, in Section 7 some conclusions and suggestionS for further research will be

formulated.

Before proceeding, a remark should be made with respect to the scope of this

paper. Strictly speaking, the methods proposed here also apply to a situation where there is

no pre-test stage and the item bank is bootstrapped during the on-line stage. However,



Quality Control of On-line Calibration - 2

without a pre-test stage, in the initial stages of on-line calibration, the data on some of the

items may be prohibitively scarce or even ill-conditioned, in the sense that there is too

little information in the data to estimate all relevant parameters. Below, it will be assumed

that the data are such that parameter estimates can be obtained. Generalization of the

methods to be proposed to poor-conditioned data, probably by introducing prior

distributions on the item parameters, is beyond the scope of the .present paper and will be

treated later. Further, it will be assumed that the number of items in the bank is such that

standard errors of estimates can be computed using the complete information matrix. Also

application of the procedures to very large item banks, where other approximations to the

standard errors have to be made, are a point of future research.

Preliminaries

Consider dichotomous items where responses of persons labeled n to items labeled i

are coded xn = 0, and xn, = 1. The probability of a correct response is given by

$i(en) = Pr(Xni = 1 I 0,a,,V7 ,)

= 7 (1 -Y ,)W,(6)

exp(ap.- 0,)
= 1 , + 1-( Y,)

1 + exp(aiOn )>

(1)

where 0,, is the ability parameter of person n and a., 13i and Y, are the discrimination,

difficulty and guessing parameter of item i , respectively. Since simultaneous ML

estimates of all item parameters are hard to obtain (see, for instance, Swaminathan and

Gifford, 1986), in the present paper it will be assumed that 7, is fixed to some plausible

constant, say, to the guessing probability. Using priors on y, to facilitate its estimation is

a topic for future study. Below, the well-known theory of MML estimation for IRT

models will be re-iterated. In this presentation the formalism of Glas (1992, 1997a, 1997b)

will be used, which, as will become apparent in the sequel, is especially suited for the

introduction of the procedures below. The choice of a distribution of ability is not
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essential to the theory presented here; it can be the parametric MML framework (see Bock

& Aitkin, 1982) or the non-parametric MML framework (see De Leeuw & Verhelst, 1986,

Follmann, 1988). However, to make the presentation explicit, it is assumed that the ability

distribution is normal with parameters p and a. Further, for reasons of simplicity, it is

assumed that all respondents belong to the same population. Modern software for the l-

and 3-PL model, such as Bilog-MG (Zimowski, Muraki, Mislevy, & Bock, R.D., 1996),

does not have this restriction, but this generalization is straightforward. So, letg(On;p,a)

be the density of O. Further, let the item administration variable cini take the value one if

the item was administered to n and zero if this was not the case. If cln1= 0 it will be

assumed that "cm = c, where c is some arbitrary constant.

Let xn and do be the response pattern and the item administration vector of

respondent n, respectively. With a reference to the ignorability principle by Rubin (1976),

Mislevy (1986) asserts that in adaptive testing consistent ML estimates of the model

parameters can be obtained maximizing the likelihood of responses x,, conditionally on

the design dn, that is, the design can be ignored. So, if 4' = (oti,(31,p,a) is the vector of all

item and population parameters, the log-likelihood to be maximized can be written as

lnL(4 ;X, D) = En 1nPr(xn Id;4 (2)

where X stands for the data matrix and D stands for the design matrix.

To derive the MML estimation equations, it proves convenient to introduce the

vector of derivatives

with

b n(4) =
a4

InPr(x_,On Id_ ;4) = ___ [1nPr(xId,,,e,,,a,13,Y) lug(e I p,a) 1, (3)

Pr(xnitcOn, a , 13 ,y) = it (1),(8.)d-c (
I

4,(0n))d-(1-x-). (4)

Glas (1992, 1997a, 1997b) adopts an identity due to Louis (1982) to write the first order

7
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derivatives of (2) with respect to 4 as

/(4)
a4
__. lnL(4 ;X,D) = EnE(b,(4)1x,d,4). (5)

This identity greatly simplifies the derivation of the likelihood equations. For instance,

using the short-hand notation yin, = y(On) and Cu = 0,(3), from (3) and (4) it can be

easily verified that

and

(x -4) )(1 -7 )0N1 )
bn(a) = "' '

,(1 ,)

(4) x 1) -1OW .(I
b( = dn,

ni(1 ni)

(6)

(7)

The likelihood equations for the item parameters are found upon inserting these

expressions into (5) and equating these expressions to zero. To derive the likelihood

equations for the population parameters, using (3) results in

and

b(10 = (On .t )a-.2

bn(a) = -a-' + (On 11)2a-3.

(8)

(9)

The likelihood equations are again found inserting these expressions in (5) and equating

these expressions to zero.

\ For computing estimation errors, and the LM, Wald and CUSUM statistics, also the

second order derivatives of the log-likelihood function are needed. As with the derivation

of the estimation equations, also for the derivation of the matrix of second order

8
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derivatives the theory by Louis (1982) can be used. Using Glas (1992), it follows that the

observed information matrix, which is the opposite of the matrix of second order

derivatives, that is,

a'InL(4;X ,D)
=

a a4,

evaluated using MML estimates, is given by

where

(10)

H(4,4) = En [E(B(4,4) xn,dn,4 ) abn(4)b(4)' I x,d,,4 )1, (11)

I 1 n(44) = a,
Pr(x n,0 d ; 4) (12)

Unfortunately, for the 3-PL model, the exact expressions for the second order derivatives

become prohibitively complicated. However, Mislevy (1986) points out that the observed

information matrix can be approximated as

H(4,4) = En E( b (1;) xn,dn,4 ) gbn(4) I xn,dn,4 y. (13)

Simulation studies by Glas (1997b) in the framework of the 2-PL model and the nominal

response model (Bock, 1972) show that this approximation is quite good, in the sense that

statistics based on this approximation attain their theoretical distribution. In the sequel, it

will become apparent that this must also holds for the 3-PL model.

Lagrange multiplier tests

Earlier applications of LM tests to the framework of IRT have been described by

Glas and Verhelst (1995) and Glas (1997a, 1997a). The principle of the LM test

(Aitchison & Silvey, 1958), and the equivalent efficient-score test (Rao, 1948) can be

summarized as follows. Consider a null-hypothesis about a model with parameters 00.

9
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This model is a special case of a general model with parameters 4) . In the present case the

special model is derived from the general model by fixing one or more parameters to

known constants. Let 4)o be partitioned as 00 = (0019002) = 01 , )
9

c' where c is the

vector of the postulated constants and Ow is the vector of free parameters of the special

model. Let h(4)) be the partial derivatives of the log-likelihood of the general model, so

h(4)) = (a/a4))1nL(4)). This vector of partial derivatives gauges the change of the log-

likelihood as a function of local changes in 4) . Let H(4),(1)) be defined as

02/a4) InL(0 ) . Then the LM statistic is given by

LM = h(4)0Y H(4)0 40-1 h (OD)* (14)

If (14) is evaluated using the ML estimate of 4)01 and the postulated values of c, it has an

asymptotic x2- distribution with degrees of freedom equal to the number of parameters

fixed (Aitchison & Silvey, 1958).

An important computational aspect of the procedure is that at the point of the ML

estimates the free parameters have a partial derivative equal to zero. Therefore, (14)

can be computed as

with

LM(c) = h(c)/ 14/-1 h(c) (15)

W = H22(c c) 1-121(c (1)01) 1111(301 1$01 1112($01 ' c) (16)

where the partitioning of H(4)0, 00) into H22(c,c) , H21(c, (1)01), H(-(1)01, (1)01), and

AiH12001 C) is according to the partition yo = Wm, Wm) (yol >c ).

Notice that H(t1)01,$ol) also plays a role in the Newton-Raphson procedure for

solving the estimation equations and in computation of the observed information matrix.

So its inverse will usually by available at the end of the estimation procedure. Further, if

1 0
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the validity of the model of the null-hypothesis is tested against various alternative

models, the computational task is relieved because the inverse of H(k1, if),),) is already

available and the order of W is equal to the number of parameters fixed, which must be

small to keep the interpretation of the outcome tractable.

The interpretation of the outcome of the test is supported by observing that the

value of (15) depends on the magnitude of h(c), that is, on the first order derivatives with

respect to the parameters 4)02 evaluated in c. If the absolute values of these derivatives are

large, the fixed parameters are bound to change once they are set free, and the test is

significant, that is, the special model is rejected. If the absolute values of these derivatives

are small, the fixed parameters will probably show little change should they be set free,

that is, the values at which these parameters are fixed in the special model are adequate

and the test is not significant, that is, the special model is not rejected.

Lagrange Multiplier Statistics for Quality Control

In the introduction section, it was already noted that simultaneous ML estimates of

all item parameters in the 3-PL model are hard to obtain (see, for instance, Swaminathan

and Gifford, 1986). Therefore, in the present paper it will be assumed that the guessing

parameter y. is fixed to some plausible constant, say, to the guessing probability. In this

section, it will be shown how an LM statistic can be used for testing whether this fixed

guessing parameter is appropriate and remains appropriate when confronted with the

adaptive testing data.

Consider G groups labeled g = 1,...,G and y, = 1 if person n belongs to group g,

yng = 0 otherwise. In this paper, the first group partakes in the pre-testing stage, and the

following groups partake in the on-line stage. Given this partition, several hypothesis can

be tested. For instance, Glas (1997a) suggests evaluating DIF by testing the hypothesis

that item parameters are constant over groups, i.e, testing the hypothesis that aig = a.

134 = 3,, for g = 1,...,G. This can, of course, also be applied in an adaptive testing

situation for monitoring parameter drift. However, in the present paper, a test for the

hypothesis that Tig = y., for g = 1,...,G will be given as an example of applying the LM

approach to quality control of adaptive testing. The LM statistic for testing this hypothesis

is based on the first order derivatives with respect to 'Li,. For using (3), the first order

1
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derivatives of (4) with respect to y bn(y1), need to be computed. It is easily verified

that

(xm-(1)ni)(1 -4tni)
bn(y,g) = yngdm (17)

Let r, be a vector of the elements yig, g = 1,...,G. A test for the null-hypothesis

yig = y, can be based on

with

LM(Fi) = h (ra)' h(r) (18)

w = H22(r,, r) H21(rt, 4) H11(4, 4 )- 1/12(t , r), (19)

where 4 is the vector of the parameters of the null-model. Therefore, H11(4 , 4) is the

matrix of second order derivatives with respect to these parameters, that is, it is equivalent

to the matrix defined by (10). If h(1- i) and W are evaluated using MML estimates of the

null-model, i.e. the estimates of 4, the im(r ) statistic has an asymptotic 7e-distribution

with G degrees of freedom.

A Wald test and a CUSUM chart for Quality Control

The CUSUM chart is an instrument of statistical quality control used for detecting

small changes in product features during the production process. The CUSUM chart is

used in a sequential statistical test, where the null-hypothesis of no change is never

accepted (Veerkamp, 1996). In the present case, the alternative hypothesis is that the item

is becoming more easy and is loosing its discriminating power. Therefore, the null-

hypothesis is cc,A, ail ?_ 0 and Pig 0, for groups of respondents labeled

g = 1,...,G. As above, the first group partakes in the pre-testing stage, and the following

groups are groups taking an adaptive test. 12
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Before turning to the one-sided hypothesis aig a 0 and 13ig - 13ii 0, first

consider the two-sided null-hypothesis that aig = 0 and = 0. Let dig be a

vector defined by dig = ( aig a, , f3u )'. This two-sided hypothesis can be

evaluated with the Wald statistic

Qi = dig 147i-8l d,g , (20)

where Wzg is the covariance matrix of d Since the statistic is computed using

independent estimates of the item parameters in two groups, it holds that Wig = Eig + Ei,

where I
ig

and Is, can be approximated using the relevant elements of the inverse of the

opposite of (13), computed with the MML estimates obtained in group g and group 1,

respectively. This statistic defined in (20) has an asymptotic x2-distribution with two

degrees of freedom. However, the interest is in a one-side test, so also the signs of the

elements of dig are needed. Since (20) is a quadratic form, its signed square root is of

interest. Further, it may be interesting to test the hypothesis iteratively. Therefore, a one-

sided cumulative sum chart will be based on the quantity

a a;{ 0, P ig
Si(g) = max Si(g-1) + " s + k., 0 , (21)

Se(aig au) Se((3 ii 134 I ail aig) '

w h e r e Se(al a,) = a, a n d Se((3i, -13 ail _ au) V620 020 /02. with

as2 2
ap and bap the appropriate elements of the covariance matrix Wig which is also used

in (20). Further, k. a reference value. The CUSUM chart starts with

Si(0) = 0, (22)

and the null-hypothesis is rejected as soon as
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Si(j) > hi, (23)

where h. is some constant threshold value. The choice of the constants k, andh,

determines the power of the procedure. In the case of the Rasch model, where the null-

hypothesis is Dig - ?_ 0, and the term involving the discrimination indices is lacking

from (21), Veerkamp (1996) successfully uses k = 1/2 and hi = 5. This choice was

motivated by the consideration that this set up has good power against the alternative

hypothesis of a normalized shift in item difficulty of approximately one standard

deviation. In the present case one extra normalized decision variable is employed, i.e., the

variable involving the discrimination indices. To have power against a shift of one

standard deviation of both normalized decision variables in the direction of the alternative

hypothesis, a value k. =1 will be tried out below. The value hi= 5 will not be changed.

Examples

In this section, the power of the procedures suggested above will be investigated

using a number of simulation studies. Since all statistics involve an estimate of the

standard error of the parameter estimates, and this: standard error is approximated using

(13), the precision of this approximation will be studied first by assessing the power of the

statistics under the null-model. Then the power of the tests will be studied under various

model violations.

For all simulations reported 'below, the ability parameters 0 were drawn from a

standard normal distribution. The item difficulties 13 uniformly distributed on

[ -1.0 , 1.01, the discrimination indices a, were drawn from a log-normal distribution

with a zero mean and a standard deviation equal to 0.10, and the guessing parametery,

was generally fixed at 0.20. In the on-line phase, item selection was done using the

maximum information principle. The ability parameter 0 was estimated by its expected a-

posteriori value (EAP), the initial prior was standard normal.

The results of eight simulation studies with respect to the power of the statistics

under the null-model are shown in Table 1, on the following page. The number of items

K in the item bank was fixed at 50 for the first four studies and at 100 for the next for

studies.
4
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Both in the pre-test phase and the on-line phase, test lengths L of 20 and 40 were chosen,

the exact setup is shown in the first two columns of Table 1. Finally, in the third column

Table 1
Power of LM and Wald test under the null-model
(100 replications)

percentage significant at 10%

K L Ng LM test Wald test

50 20 500 8 9
1000 10 10

40 500 9 10

1000 , 11 8

100 20 500 12 10

1000 8 9

40 500 10 12

1000 10 10

K size item pool
L test length
Ng number of persons in calibration and adaptive testing batches

it can be seen that the number of respondents per phase was fixed at 500 and 1000

respondents. So summed over the pre-test and on-line phase, the sample sizes were 1000

and 2000 respondents, respectively. For the pre-test phase, the a spiralled test

administration design was used. For instance, for the K= 50 studies, for the pre-test

phase, five subgroups were used, the first subgroup was administered the items 1 to 20,

the second the items 11 to 30, the third the items 21 to 40 the fifth the items 31 to 50, and

the last group received the items 1 to 10 and 41 to 50. In this manner, all items drew the

same number of responses in the pre-test phase. For the K = 100 studies, for the pre-test

phase four subgroups administered 50 items were made, so here the design was 1 50,

26 - 75, 51 - 100 and 1 -25 and 76 - 100. For each study, 100 replications were run.

The results of the study are shown in the last two columns of Table 1. These

columns contain the percentages of LM and Wald tests that were significant at the 10%

level. It can be seen that the power of the tests conforms its theoretical value of 10%.

Therefore, it can be concluded that the approximations of the standard errors were quite

close.

5
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Table 2

Detection of aberrant items: changes in y.

(per row: 100 replications for LM/Wald and 20 replications for CUSUM)

from 7,=.00 to yi=.25

significant at 10% CUSUM detected after iteration

K L N LM test Wald test 2 3 4 6 8 10

50 20 500 95 69 72 77 88 100 100 100

1000 100 70 85 90 100 100 100 100

40 500 100 100 77 83 99 100 100 100

1000 100 100 93 98 100 100 100 100

100 20 500 92 93 69 75 92 100 100 100

1000 98 92 81 95 100 100 100 100

40 500 100 100 73 87 100 100 100 100

1000 100 100 88 99 100 100 100 100

from 7,=.20 to y,=.30

significant at 10% CUSUM detected after iteration

K L Ng LM test Wald test 2 3 4 6 8 10

50 20 500 10 25 2 3 4 12 33 45

1000 40 60 2 4 4 35 58 66

40 500 31 22 3 3 4 22 44 65

1000 55 73 4 6 7 45 56 78

100 20 500 18 21 1 2 10 11 45 50

1000 58 47 4 5 5 13 54 67

40 500 42 44 3 4 7 32 45 75

1000 49 77 2 6 7 22 50 76

from yi=.20 to yi=.40

significant at 10% CUSUM detected after iteration

K L N
R

LM test Wald test 2 3 4 6 8 10

50 20 500 50 44 10 15 19 40 66 70

1000 90 60 12 18 22 50 81 82

40 500 89 97 18 26 33 76 89 100

1000 100 99 17 24 38 73 100 100

100 20 500 52 44 9 12 18 34 75 86

1000 88 73 I1 22 25 68 79 100

40 500 90 82 19 24 31 57 83 100

1000 100 100 18 29 30 77 100 100

A second series of simulations was focussed on the power in the case that the on-

line responses were given using a value for the guessing parameter 7, that was different

- 6
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from the value of the pre-test phase. The results are shown in Table 2. The first panel of

the table pertains to a situation where, for the items 5, 10, 15, etc., 7, changes from 0.00

in the pre-test phase to 0.25 in the on-line phase. So 20% of the items do not fit the null-

model of the pre-test phase. In the fourth and fifth column, the rejection rate of aberrant

items using a 10% significance level is shown for the LM and Wald test, respectively. The

number of replications was 100. It can be seen that the power of both tests is quite large.

Then, for 20 replications, 9 more batches of size Ng of respondents were generated and

for each new batch, the CUSUM statistic defined by (21) was computed. In the last six

columns the percentage of the detected aberrant items is shown. Non-aberrant items were

detected at chance level, in this case 5%. It can be seen that approximately 100% of the

aberrant items is detected after 4 iterations, which can be considered quite good.

The positive picture of the power of the LM, Wald and CUSUM changes

dramatically, if y, = 0.20 changes from 0.20 in the pre-test phase to 0.30 in the on-line

phase. From the second panel of Table 2, it can be seen that in this case the power of the

LM and Wald test is quite low, while even after 10 iterations the CUSUM procedure has

only detected about half of the aberrant items. In the last panel of Table 2, y, changes

from 0.20 to 0.40, and the power becomes better, although for the L = 20 studies, the

power is still quite low.

Note that in the above simulations, only the LM test is strictly aimed at the

alternative that y. changed. However, the estimates of the three parameters of the 3-

PL model are highly correlated. This implies that changes in parameters are often

confounded and it is very difficult to identify the actual parameter that is changing. For

instance, if an item becomes known, this can both be translated into an augmentation of

yi, that is, in an augmentation of a correct response unassociated with 0, in a loss of

discriminating power, and in a lowering of item difficulty. As a consequence, a test that

should be sensitive to changes in y. also have power against changes in a, and 13,.

The latter case was investigated using the same simulation setup as above. The results are

displayed in Table 3, the first panel pertains to a change of -0.50 in the difficulty of the

items 5, 10, 15, 20, etc., the second panel pertains to a change -1.00 in the difficulty of

these items. It can be seen that all tests are indeed sensitive to these changes, especially

the power for the change -1.00 is very high.

17
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Table 3

Detection of aberrant items: changes in P

(per row: 100 replications for LM/Wald and 20 replications for CUSUM)

change -0.50

significant at 10% CUSUM detected after iteration

K L N LM test Wald test 2 3 4 6 8 10

50 20 500 25 24 12 17 33 65 96 100
1000 27 28 10 17 28 80 91 100

40 500 24 22 12 26 38 88 99 100
1000 30 20 15 22 41 83 100 100

100 20 500 23 21 12 18 31 94 95 100
1000 44 33 5 20 32 78 89 100

40 500 50 42 19 24 54 87 100 100
1000 53 44 17 23 55 87 100 100

change -1.00

significant at 10% CUSUM detected after iteration

K L N LM test Wald test 2 3 4 6 8 10

50 20 500 99 89 80 99 100 100 100 100
1000 90 90 85 90 100 100 100 100

40 500 89 96 87 83 100 100 100 100
1000 94 96 89 98 100 100 100 100

100 20 500 96 98 87 95 98 100 100 100
1000 99 92 83 95 100 100 100 100

40 500 89 94 93 97 100 100 100 100
1000 99 99 98 99 100 100 100 100

Discussion

In this paper, it was explored how to evaluate whether the adaptive testing data

used for on-line calibration sufficiently fit the item response model used. Three approaches

were studied, one based on a Lagrange multiplier (LM) statistic, the others on a Wald and

a cumulative sum (CUSUM) statistic, respectively. The theoretical advantage of the latter

procedure is that it is based on a directional hypothesis and can be used iteratively. The

power of the tests was evaluated with a number of simulation studies. It was found that

the power of the procedures ranged from rather moderate for a change from y, = 0.20 to

y, = 0.30, to good for a change from if, = 0.00 to yi = 0.25. Further, it was found that

the tests are equally sensitive to changes in item difficulty and the guessing parameter. So

the bottom line here is that all these statistics detect that something has happened to the

parameters, but it will be very difficult to attribute misfit to specific parameters.
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Author Note

This study received funding from the Law School Admission Council (LSAC). The

opinions and conclusions contained in this paper are those of the author and do not
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